Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 12: 980970, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36237429

RESUMEN

Alternaria dianthicola is a pathogenic fungus that causes serious leaf or flower blight on some medicinal plants worldwide. In this study, multiple dsRNA bands in the range of 1.2-10 kbp were found in a Alternaria dianthus strain HNSZ-1, and eleven full-length cDNA sequences of these dsRNA were obtained by high-throughput sequencing, RT-PCR detection and conventional Sanger sequencing. Homology search and phylogenetic analyses indicated that the strain HNSZ-1 was infected by at least nine mycoviruses. Among the nine, five viruses were confirmed to represent novel viruses in the families Hypoviridae, Totiviridae, Mymonaviridae and a provisional family Ambiguiviridae. Virus elimination and horizontal transmission indicated that the (-) ssRNA virus, AdNSRV1, might be associated with the slow growth and irregular colony phenotype of the host fungus. As far as we know, this is the first report for virome characterization of A. dianthus, which might provide important insights for screening of mycovirus for biological control and for studying of the interactions between viruses or viruses and their host.


Asunto(s)
Virus Fúngicos , Virus ARN , Alternaria/genética , ADN Complementario/genética , Virus Fúngicos/genética , Genoma Viral , Filogenia , Virus ARN/genética , ARN Bicatenario/genética , ARN Viral/genética
2.
Arch Virol ; 167(12): 2777-2781, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36178543

RESUMEN

In this study, a novel mitovirus was isolated from the fungus Fusarium equiseti causing potato dry rot and tentatively designated as "Fusarium equiseti mitovirus 1" (FeMV1). The full-length genome sequence of FeMV1 consists of 2,459 nucleotides with a predicted A + U content of 69.5%. Using the mold mitochondrial genetic code, an open reading frame (ORF) of 725 amino acids (aa) was predicted to encode an RNA-dependent RNA polymerase (RdRp). The RdRp protein contains six conserved motifs, with the highly conserved GDD in motif IV, and the 5'-untranslated region (UTR) and 3'-UTR of FeMV1 have the potential to fold into stem-loop secondary structures and a panhandle structure, both of which are typical characteristics of members of the family Mitoviridae. Results of a BLASTp search showed that the RdRp aa sequence of FeMV1 shared the highest sequence similarity with that of Fusarium poae mitovirus 2 (FpMV2) (76.84% identity, E-value = 0.0). Phylogenetic analysis based on the complete aa sequence of RdRp further suggested that FeMV1 is a new member of the family Mitoviridae. This is the first report of the complete genome sequence analysis of a mitovirus associated with F. equiseti.


Asunto(s)
Virus Fúngicos , Fusarium , Virus ARN , Solanum tuberosum , Filogenia , Genoma Viral , Fusarium/genética , Sistemas de Lectura Abierta , ARN Viral/genética
3.
Arch Virol ; 166(12): 3493-3497, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34622361

RESUMEN

The complete genome sequence of a double-stranded RNA (dsRNA) mycovirus that was isolated from Alternaria solani strain DT-10 causing potato foliar disease was determined. The virus, designated as "Alternaria solani chrysovirus 1" (AsCV1), has four dsRNA segments (dsRNA 1-4) with a length of 3600 bp, 3128 bp, 2996 bp, and 2714 bp, respectively. The RNA-dependent RNA polymerase (RdRp, 1084 amino acids [aa]), putative capsid protein (905 aa), alphachryso-P3 (835 aa), and alphachryso-P4 (729 aa) were encoded by dsRNA1, dsRNA2, dsRNA3, and dsRNA4, respectively, which had the highest sequence identity of 41.77%-72.38% to their counterparts in Helminthosporium victoriae virus 145S (HvV145S) of the genus Alphachrysovirus, family Chrysoviridae. Moreover, the 5'-untranslated regions (UTRs) of AsCV1 dsRNA 1-4, which contained several unique inserts (3-37 bp) and deletions (5-64 bp), shared 51.65%-68.01% identity with those of HvV145S. Phylogenetic analysis based on RdRp sequences showed that AsCV1 clustered the most closely with HvV145S. Considering its distinct host specificity, the low sequence similarity of its encoded proteins to those of other viruses, the unusual features of the 5'-UTRs of its dsRNA 1-4, and the phylogenetic position of its RdRp gene, AsCV1 should be considered a member of a new species in the genus Alphachrysovirus. To the best of our knowledge, this is the first alphachrysovirus identified from phytopathogenic A. solani.


Asunto(s)
Virus Fúngicos , Virus ARN , Solanum tuberosum , Alternaria/genética , Virus Fúngicos/genética , Genoma Viral , Sistemas de Lectura Abierta , Filogenia , Virus ARN/genética , ARN Bicatenario/genética , ARN Viral/genética
4.
Viruses ; 13(10)2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34696345

RESUMEN

Cercospora leaf spot (CLS) caused by Cercospora beticola is a devastating foliar disease of sugar beet (Beta vulgaris), resulting in high yield losses worldwide. Mycoviruses are widespread fungi viruses and can be used as a potential biocontrol agent for fugal disease management. To determine the presence of mycoviruses in C. beticola, high-throughput sequencing analysis was used to determine the diversity of mycoviruses in 139 C. beticola isolates collected from major sugar beet production areas in China. The high-throughput sequencing reads were assembled and searched against the NCBI database using BLASTn and BLASTx. The results showed that the obtained 93 contigs were derived from eight novel mycoviruses, which were grouped into 3 distinct lineages, belonging to the families Hypoviridae, Narnaviridae and Botourmiaviridae, as well as some unclassified (-)ssRNA viruses in the order Bunyavirales and Mononegavirales. To the best of our knowledge, this is the first identification of highly diverse mycoviruses in C. beticola. The novel mycoviruses explored in this study will provide new viral materials to biocontrol Cercospora diseases. Future studies of these mycoviruses will aim to assess the roles of each mycovirus in biological function of C. beticola in the future.


Asunto(s)
Cercospora/virología , Virus Fúngicos/clasificación , Enfermedades de las Plantas/microbiología , Plantas/microbiología , Secuencia de Aminoácidos , Beta vulgaris/microbiología , Biodiversidad , China , Virus Fúngicos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Enfermedades de las Plantas/virología
5.
Braz. arch. biol. technol ; 64: e21200534, 2021. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1345496

RESUMEN

Abstract Guarana, the fruit of Paullinia cupana, is known for its stimulating and medicinal properties by the Amazonian indigenous population and communities. However, it presents serious phytopathological problems, such as anthracnose disease caused by Colletotrichum spp. The objective of this study was to verify if C. siamense, a mycovirus-carrying endophytic fungus, could protect guarana seedlings, by reducing or by eliminating characteristic disease symptoms. Other physiological changes in the plant caused by the presence of this endophyte were also evaluated. The cuttings of the Cereçaporanga cultivar were dipped in a biological control suspension and planted in a specific substrate. After four months in the greenhouse, the seedlings were sprayed with a suspension of phytopathogen conidia, and a portion of these seedlings received the fungicide indicated for the crop to be compared with the control seedlings. After 28 days, the number of lesions, morphophysiological and macro characteristics, and leaf micronutrients were evaluated. The seedlings treated with C. siamense showed a lower percentage of lesions and an increased aerial part and root system compared to the other treatments. There were no significant differences between treatments regarding the percentage of macronutrients and micronutrients.


Asunto(s)
Colletotrichum/virología , Paullinia , Virus Fúngicos , Ecosistema Amazónico
6.
Arch Virol ; 165(7): 1719-1723, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32424446

RESUMEN

A double-stranded RNA (dsRNA) segment was identified in Rhizoctonia solani anastomosis group (AG)-2-2IIIB, the primary causal agent of Rhizoctonia crown and root rot of sugar beet. The dsRNA segment represented the genome replication intermediate of a new mitovirus that was tentatively designated as "Rhizoctonia solani mitovirus 39" (RsMV-39). The complete sequence of the dsRNA was 2805 bp in length with 61.9% A+U content. Using either the fungal mitochondrial or universal genetic code, a protein of 840 amino acids containing an RNA-dependent RNA polymerase (RdRp) domain was predicted with a molecular mass of 94.46 kDa. BLASTp analysis revealed that the RdRp domain of RsMV-39 had 43.55% to 72.96% sequence identity to viruses in the genus Mitovirus, and was the most similar (72.96% identical) to that of Ceratobasidium mitovirus A (CbMV-A). Phylogenetic analysis based on RdRp domains clearly showed that RsMV-39 is a member of a distinct species in the genus Mitovirus of the family Mitoviridae. This is the first full genome sequence of a mycovirus associated with R. solani AG-2-2IIIB.


Asunto(s)
Beta vulgaris/microbiología , Virus Fúngicos/aislamiento & purificación , Genoma Viral , Enfermedades de las Plantas/microbiología , Virus ARN/aislamiento & purificación , Rhizoctonia/virología , Secuencia de Bases , Virus Fúngicos/clasificación , Virus Fúngicos/genética , Filogenia , Virus ARN/clasificación , Virus ARN/genética , Rhizoctonia/fisiología
7.
World J Microbiol Biotechnol ; 35(5): 69, 2019 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-31011888

RESUMEN

The filamentous Bipolaris and Curvularia genera consist of species known to cause severe diseases in plants and animals amounting to an estimated annual loss of USD $10 billion worldwide. Despite the harmful effect of Bipolaris and Curvularia species, scarce attention is paid on beneficial areas where the fungi are used in industrial processes to generate biotechnological products. Catalytic potential of Bipolaris and Curvularia species in the production of biodiesel, bioflucculant, biosorbent, and mycoherbicide are promising for the bioeconomy. It is herein demonstrated that knowledge-based application of some endophytic Bipolaris and Curvularia species are indispensable vectors of sustainable economic development. In the twenty-first century, India, China, and the USA have taken progress in the biotechnological application of these fungi to generate wealth. As such, some Bipolaris and Curvularia species significantly impact on global crop improvement, act as catalyst in batch-reactors for biosynthesis of industrial enzymes and medicines, bioengineer of green-nanoparticle, agent of biofertilizer, bioremediation and bio-hydrometallurgy. For the first time, this study discusses the current advances in biotechnological application of Bipolaris and Curvularia species and provide new insights into the prospects of optimizing their bioengineering potential for developing bioeconomy.


Asunto(s)
Ascomicetos , Bioingeniería , Biotecnología , Endófitos , Ascomicetos/clasificación , Ascomicetos/enzimología , Ascomicetos/metabolismo , Biodegradación Ambiental , Biocombustibles , Agentes de Control Biológico , Biotransformación , Endófitos/clasificación , Endófitos/enzimología , Endófitos/metabolismo , Fertilizantes , Floculación , Virus Fúngicos , Herbicidas , Metalurgia , Nanopartículas , Suelo/química , Simbiosis , Termotolerancia , Uranio
8.
Med Mycol ; 57(Supplement_2): S179-S188, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30816971

RESUMEN

With the current revived interest in the use of bacteriophages for the treatment of bacterial infections, the study of mycoviruses as novel therapeutic solutions for invasive aspergillosis is the logical next step. Although ssRNA, dsRNA, and ssDNA mycoviruses have been identified, the majority of characterised mycoviruses have dsRNA genomes. Prevalence of dsRNA mycoviruses in Aspergillus spp. varies, and mycoviruses can have different effects on their fungal hosts: hypovirulence, hypervirulence, or a killer phenotype. Therapeutically, extracellular transmission of the mycovirus is essential. DsRNA mycoviruses lack an extracellular phase; however, a single ssDNA mycovirus with homologues in Aspergillus genomes has been described with an extracellular mode of transmission. Mycoviruses can induce hypovirulence or a killer phenotype, and both can be exploited therapeutically. Mycoviruses inducing hypovirulence have been used to control chestnut blight, however for aspergillosis no such mycovirus has been identified yet. Mycovirus encoded killer toxins or anti-idiotypic antibodies and killer peptides derived from these have been demonstrated to control fungal infections including aspergillosis in animals. This indicates that mycoviruses inducing both phenotypes could be exploited therapeutically as long as the right mycovirus has been identified.


Asunto(s)
Aspergillus/crecimiento & desarrollo , Aspergillus/virología , Terapia Biológica/métodos , Virus Fúngicos/crecimiento & desarrollo , Aspergilosis Pulmonar Invasiva/terapia , Animales , Humanos
9.
Arch Virol ; 164(2): 567-572, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30343382

RESUMEN

Phytophthora infestans is the causal agent of potato and tomato late blight. In this study, we obtained the complete genome sequence of a novel RNA virus from this plant pathogen, tentatively named "Phytophthora infestans RNA virus 2" (PiRV-2). The PiRV-2 genome is 11,170 nt in length and lacks a polyA tail. It contains a single large open reading frame (ORF) with short 5' and 3' untranslated regions. The ORF is predicted to encode a polyprotein of 3710 aa (calculated molecular weight, 410.94 kDa). This virus lacks significant similarity to any other known viruses, even in the conserved RNA-dependent RNA polymerase region. Phylogenetic analysis demonstrated that it did not cluster with any known virus group. We conclude that PiRV-2 belongs to a new virus family yet to be described. This virus was found to be faithfully transmitted through asexual reproduction.


Asunto(s)
Virus Fúngicos/aislamiento & purificación , Phytophthora infestans/virología , Enfermedades de las Plantas/microbiología , Virus ARN/aislamiento & purificación , Virus Fúngicos/clasificación , Virus Fúngicos/genética , Sistemas de Lectura Abierta , Filogenia , Virus ARN/clasificación , Virus ARN/genética , ARN Polimerasa Dependiente del ARN , Solanum tuberosum/microbiología , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA